Assistant Professor Dang Thuy Tram

 

Asst Prof DANG Thuy Tram

Position

Assistant Professor, School of Chemical and Biomedical Engineering
College of Engineering, Nanyang Technological University, Singapore.

Education

PhD (Chemical Engrg) Massachusetts Institute of Technology 2012
BSc (Chemical Engrg) University of Illinois 2006

Biography

Assistant Professor DANG Thuy Tram joined the School of Chemical and Biomedical Engineering in January 2016. Assistant Prof. Dang received her bachelor degree from the University of Illinois, Urbana-Champaign and her PhD degree from Massachusetts Institute of Technology, both in Chemical Engineering. She also conducted her postdoctoral training as a Controlled Release Society fellow at Brigham and Women’s Hospital, Harvard Medical School. Prior to joining SCBE, she was a Senior Research Fellow at the Institute of Medical Biology, A*STAR Singapore where she currently remains affiliated as an Adjunct Investigator.

Research Interests

Assistant Prof. Dang’s multidisciplinary research interests span the fields of biomaterials, drug delivery and cell-based therapeutics. Our lab aims to integrate fundamental understanding of cellular and molecular microenvironment with engineering advances in the design of biocompatible materials, biologically responsive drug delivery and microfabricated cell-based systems to develop more effective treatments for diabetes and wound healing.

Our current research activities center on the following three areas

1. Host immune response to polymeric biomaterials
We seek to understand the influence of materials’ physical and chemical properties on their interaction with the surrounding cellular microenvironment in the host response to polymeric biomaterials. Our long term goal is utilize this knowledge in rational design of biomaterial surfaces to promote successful clinical integration of implanted medical devices, drug delivery systems and tissue-engineered scaffolds. In addition, we also study the immunogenicity of degradable polymeric biomaterials to predict their long-term performance in non-medical biological systems and evaluate their potential applications in cosmetic or food industries.

2. Biologically responsive drug delivery systems
We are interested in designing novel drug delivery systems that harness altered biochemical signals in pathological states to program the release of therapeutics for effective restoration of physiological balance.

3. Modular programming of pancreatic micro-tissues
Therapeutic cells, such as pancreatic islets for diabetes treatment, often suffer from decreased viability and function when transplanted into the body of recipients due to the absence of supporting blood vessels. Our team seeks to overcome this limitation by re-programming the pancreatic islets’ modular micro-structures to optimize their cellular configuration for enhanced oxygen and nutrient transports.

Research Grant

  • Academic Research Fund Tier 1 (2016-) [by MOE]
  • NTU Internal Funding (2017-) [by Nanyang Technological University]
  • NTU Internal Funding – Start Up Grant – College of Engineering (2016-) [by Nanyang Technological University]

Current Projects

  • Designing Modularized Islet Micro-tissues for Enhanced Diabetes Therapy
  • Evaluating the predictive role of early inflammatory biomarkers in the host response to implanted biomaterials
  • Home-based diagnostic dressing for automatic detection of infected chronic wounds in elderly patients

Selected Publications

  • Tan TS, Ng YZ, Badowski C, Dang TT, Common JEA, Lacina L, Szeverenyi, Lane EB. (2016). Assays to study consequences of keratin mutations. Methods in Enzymology, .
  • Dang TT, Nikkhah N, Memic A, Khademhosseini A.(2014). Polymeric Biomaterials for Implantable Prostheses. In Sangamesh Kumbar, Cato Laurencin, Meng Deng(Ed), Natural and Synthetic Biomedical Polymers.Elsevier.
  • Su Ryon Shin, Behnaz Aghaei‐Ghareh‐Bolagh, Tram T Dang, Seda Nur Topkaya, Xiguang Gao, Seung Yun Yang, Sung Mi Jung, Jong Hyun Oh, Mehmet R Dokmeci, Xiaowu Shirley Tang, Ali Khademhosseini. (2013). Cell‐laden Microengineered and Mechanically Tunable Hybrid Hydrogels of Gelatin and Graphene Oxide. Advanced Materials, .
  • Gu Z, Dang TT, Ma M, Tang BC, Cheng H, Jiang S, Dong Y, Zhang Y, and Anderson DG. (2013). Responsive Microgels for Closed-Loop Insulin Delivery. ACS Nano, 7(8), 6758-6.
  • Dang TT, Thai AV, Cohen J, Slosberg JE, Siniakowicz K, Doloff JC, Ma M, Hollister-Lock J, Tang KM, Gu Z, Cheng H, Weir GC, Langer R, Anderson DG. (2013). Enhanced function of immuno-isolated islets in diabetes therapy by co-encapsulation with an anti-inflammatory drug. Biomaterials, 34(23), 5792-801.

Email: TTDANG@NTU.EDU.SG
Phone: (+65)6790 4257
Office: N1.3-B3-09